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ABSTRACT

Generalization remains one of the most important desiderata for robust robot learning
systems. While recently proposed approaches show promise in generalization to novel
objects, semantic concepts, or visual distribution shifts, generalization to new tasks
remains challenging. For example, a language-conditioned policy trained on pick-and-
place tasks will not be able to generalize to a folding task, even if the arm trajectory of
folding is similar to pick-and-place. Our key insight is that this kind of generalization
becomes feasible if we represent the task through rough trajectory sketches. We propose
a policy conditioning method using such rough trajectory sketches, which we call RT-
Trajectory, that is practical, easy to specify, and allows the policy to effectively perform
new tasks that would otherwise be challenging to perform. We find that trajectory
sketches strike a balance between being detailed enough to express low-level motion-
centric guidance while being coarse enough to allow the learned policy to interpret the
trajectory sketch in the context of situational visual observations. In addition, we show
how trajectory sketches can provide a useful interface to communicate with robotic
policies – they can be specified through simple human inputs like drawings or videos, or
through automated methods such as modern image-generating or waypoint-generating
methods. We evaluate RT-Trajectory at scale on a variety of real-world robotic tasks, and
find that RT-Trajectory is able to perform a wider range of tasks compared to language-
conditioned and goal-conditioned policies, when provided the same training data. Eval-
uation videos can be found at https://rt-trajectory.github.io/.

1 INTRODUCTION

The pursuit of generalist robot policies has been a perennial challenge in robotics. The goal is to devise
policies that not only perform well on known tasks but can also generalize to novel objects, scenes, and
motions that are not represented in the training dataset. The generalization aspects of the policies are
particularly important because of how impractical and prohibitive it is to compile a robotic dataset covering
every conceivable object, scene, and motion. In this work we focus on the aspects of policy learning
that, as we later show in the experiments, can have a large impact of their generalization capabilities: task
specification and policy conditioning.

Traditional approaches to task specification include one-hot task conditioning (Kalashnikov et al., 2021),
which has limited generalization abilities since one-hot vector does not capture the similarities between
different tasks. Recently, language conditioning significantly improves generalization to new language
commands (Brohan et al., 2023b), but it suffers from the lack of specificity, which makes it difficult to
generalize to a new motion that can be hard to describe. Goal image or video conditioning (Lynch et al.,
2019; Chane-Sane et al., 2023), two other alternatives, offer the promise of more robust generalization and
can capture nuances hard to express verbally but easy to show visually. However, it has been shown to be
hard to learn from (Jang et al., 2022) and requires more effort to provide at test time, making it less practical.
Most importantly, policy conditioning not only impacts the practicality of task specification, but can have a
large impact on generalization at inference time. If the representation of the task is similar to the one of the
training tasks, the underlying model is more likely able to interpolate between these data points. This is often
reflected with the type of generalization exhibited in different conditioning mechanisms – for example, if the
policy is conditioned on natural language commands, it is likely to generalize to a new phrasing of the text
command, whereas that same policy when trained on pick-and-place tasks will struggle with generalizing to
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Figure 1: We propose RT-Trajectory, a framework for utilizing coarse trajectory sketches for policy
conditioning. We train on hindsight trajectory sketches (top left) and evaluate on inference trajectories
(bottom left) produced via Trajectory Drawings, Human Videos, or Foundation Models. These trajectory
sketches are used as task specification for an RT-1 (Brohan et al., 2023b) policy backbone (right). The
trajectories visually describe the end-effector motions (curves) and gripper interactions (circles).

a folding task, even if the arm trajectory of folding is similar to pick-and-place, because in language space,
this new task is outside of the previously seen data. This begs a question: can we design a better conditioning
modality that is expressive, practical and, at the same time, leads to better generalization to new tasks?

To this end, we propose to use a coarse trajectory as a middle-ground solution between expressiveness
and ease of use. Specifically, we introduce the use of a 2D trajectory projected into the camera’s field
of view, assuming a calibrated camera setup. This approach offers several advantages. For example, given
a dataset of demonstrations, we can automatically extract hindsight 2D trajectory labels without the need
for manual annotation. In addition, trajectory labels allow us to explicitly reflect similarities between
different motions of the robot, which, as we show in the experiments, leads to better utilization of the
training dataset resulting in a wider range of tasks compared to language- and goal-conditioned alternatives.
Furthermore, humans or modern image-editing models can sketch these trajectories directly onto an image,
making it a simple yet expressive policy interface.

The main contribution of this paper is a novel policy conditioning framework RT-Trajectory that fosters task
generalization. This approach employs 2D trajectories as a human-interpretable yet richly expressive condi-
tioning signal for robot policies. Our experimental setup involves a variety of object manipulation tasks with
both known and novel objects. Our experiments show that RT-Trajectory outperforms existing policy condi-
tioning techniques, particularly in terms of generalization to novel motions, an open challenge in robotics.

2 RELATED WORK

In this section, we discuss prior works studying generalization in robot learning as well as works proposing
specific policy conditioning representations.

Generalization in Robot Learning Recent works have studied how learning-based robot policies may
generalize robustly to novel situations beyond the exact data seen during training. Empirical studies have
analyzed generalization challenges in robotic imitation learning, focusing on 2D control (Toyer et al.,
2020), demonstration quality (Mandlekar et al., 2021), visual distribution shifts (Xie et al., 2023), and
action consistency (Belkhale et al., 2023). In addition, prior works have proposed evaluation protocols
explicitly testing policy generalization; these include generalizing to novel semantic attributes (Shridhar
et al., 2021), holdout language templates (Jang et al., 2021), unseen object categories (Pinto & Gupta, 2016;
Mahler et al., 2017; Shridhar et al., 2022; Stone et al., 2023), new backgrounds and distractors (Chen et al.,
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2023; Yu et al., 2023), combinations of distribution shifts (Brohan et al., 2023b; Jiang et al., 2023), open-set
language instructions (Xiao et al., 2023; Huang et al., 2023), and web-scale semantic concepts (Brohan
et al., 2023a). While these prior works largely address semantic and visual generalization, we additionally
study task generalization which include situations which require combining seen states and actions in
new ways, or generalizing to wholly unseen states or motions altogether.

Figure 2: The choice of robot policy representation
balances specification detail and focusing policies
on “what to do” compared with “how to do it”.

Policy Conditioning Representations We examine
a few approaches for policy conditioning. Broadly,
there are 2 axes to consider: (1) over-specification
and under-specification of goals, and (2) conditioning
on all states in a trajectory versus only the end state.
The most prolific recent body of work focuses on
language-conditioned policies (Jang et al., 2021; Bro-
han et al., 2023b;a; Nair et al., 2021; Ahn et al., 2022;
Hill et al., 2020; Lynch & Sermanet, 2021), which uti-
lize templated or freeform language as task specifica-
tion. Language-conditioned policies can be thought
of as under-specified on the end state (e.g. there are
many possible end-states for a policy that completes
pick can). There are many image-conditioned pol-
icy representations with the most popular technique
being goal-image conditioning: where a final goal
image defines the desired task’s end-state (Bousmalis
et al., 2023; Lynch et al., 2019). Goal image condi-
tioned policies can be thought of as over-specified on the end state (i.e. “what to do”) because they define
an entire configuration, some of which might not be relevant. For example, the background pixels of the
goal image might not be pertinent to the task, and instead contain superfluous information. There are some
examples of intermediate levels of specification that propose 2D and 3D object-centric representations
(Stone et al., 2023; Shridhar et al., 2021; Huang et al., 2023), using a multimodal embedding that represents
the task as a joint space of task-conditioned text and goal-conditioned image (Xiao et al., 2023; Jiang et al.,
2023; Shridhar et al., 2021), and describing the policy as code (Liang et al., 2022) which constrains how
to execute every state. An even more detailed type of state-specification would be conditioning on an
entire RGB video which is equivalent to over-specification over the entire trajectory of states (i.e. “how to
do it”) (Chane-Sane et al., 2023). However, encoding long videos in-context is challenging to scale, and
learning from high-dimensional videos is a challenging learning problem (Jang et al., 2021). In contrast,
our approach uses a lightweight coarse level of state-specification, which aims to strike a balance between
sufficient state-specification capacity to capture salient state properties while still being tractable to learn
from. We specifically compare against language-conditioning and goal-image conditioning baselines, and
show the benefits of using a mid-level conditioning representation such as coarse trajectory sketches.

3 METHOD

3.1 OVERVIEW

Our goal is to learn a robotic control policy that is able to utilize a 2D coarse trajectory sketch image as its
conditioning. A system diagram for our proposed approach can be seen in Fig 1. During policy training, we
first perform hindsight trajectory labeling to obtain trajectory conditioning labels from the demonstration
dataset (Section 3.2). This enables us to re-use existing demonstration dataset and ensures the scalability of
our proposed approach to new datasets. We then train a transformer-based control policy that is conditioned
on the 2D trajectory sketches using imitation learning (Section 3.3). During inference time, the user or a
high-level planner is presented an initial image observation from the robot camera, and creates a rough 2D
trajectory sketch that specifies the desired motion (Fig. 1 bottom left), which is then fed into the trained
control policy to perform the designated manipulation task.

3.2 HINDSIGHT TRAJECTORY LABELS

In this section, we describe how we acquire training trajectory conditioning labels from the demonstration
dataset. We introduce three basic elements for constructing the trajectory representation format: 2D
Trajectories, Color Grading, and Interaction Markers.
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Figure 3: Visualization of the two hindsight trajectory sketch representations we study. Given (a) an
example robot trajectory, we extract (b) gripper interaction markers, (c) temporal progress along the 2D end-
effector waypoints, and (d) end-effector height. Combining (b) and (c) results in (e) RT-Trajectory (2D),
while combining (b), (c), and (d) results in (f) RT-Trajectory (2.5D).

2D Trajectory For each episode in the demonstration dataset, we extract a 2D trajectory of robot end-
effector center points. Concretely, given the proprioceptive information recorded in the episode, we obtain
the 3D position of the robot end-effector center defined in the robot base frame at each time step, and
project it to the camera space given the known camera extrinsic and intrinsic parameters. We assume that
the robot base and camera do not move within the episode, which is common for stationary manipulation.
Given a 2D trajectory (a sequence of pixel positions), we draw a curve on a blank image, by connecting 2D
robot end-effector center points at adjacent time steps through straight lines.

Color Grading To express relative temporal motion, which encodes such as velocity and direction, we
also explore using the red channel of the trajectory image to specify the normalized time step t+1

T , where t
is the current time step and T is the total episode length. Additionally, we propose incorporating height
information into the trajectory representation by utilizing the green channel of the trajectory image to
encode normalized height relative to the robot base ht+1−hmin

hmax−hmin
.

Interaction Markers For robot manipulation tasks, time steps when the end-effector interacts with the
environment are particularly important. Thus, we explore visual markers that explicitly highlight the time
steps when the gripper begins to grasp and release objects. Concretely, we first compute whether the
gripper has contact with objects by checking the difference δt= p̂t−pt between the sensed (pt) and target
(p̂t) gripper joint positions. If the difference δt>0 and p̂t>ε, where ε is a threshold of closing action (pt
increases as the gripper closes), it indicates that the gripper is closing and grasping certain object. If the
status change, e.g., δt<0∨p̂t≤ε but δt+1>0∧p̂t+1>ε, we consider the time step t as a key step for the
closing action. Similarly, we can find the key time steps for the opening action. We draw green (or blue)
circles at the 2D robot end-effector center points of all key time steps for closing (or opening) the gripper.

Trajectory Representations In this work, we propose two forms of trajectory representation from different
combinations of the basic elements. In the first one, RT-Trajectory (2D), we construct an RGB image
containing the 2D Trajectory with temporal information and Interaction Markers to indicate particular robot
interactions (Fig. 3 (e)). In the second representation, we introduce a more detailed trajectory representation
RT-Trajectory (2.5D), which includes the height information in the 2D trajectory (Fig. 3 (f)).

3.3 POLICY TRAINING

We leverage Imitation Learning due to its strong success in multitask robotic imitation learning settings
(Jang et al., 2022; Bousmalis et al., 2023). More specifically, we assume access to a collection of successful
robot demonstration episodes. Each episode τ contains a sequence of pairs of observations ot and actions
at: τ={(ot,at)}. The observations include RGB images obtained from the head camera xt and hindsight
trajectory sketch ctraj. We then learn a policy π represented by a Transformer (Vaswani et al., 2017) using
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Behavior Cloning (Pomerleau, 1988) following the RT-1 framework (Brohan et al., 2023b), by minimizing
the log-likelihood of predicted actions at given the input image and trajectory sketch. To support trajectory
conditioning, we modify the RT-1 architecture as follows. The trajectory sketch is concatenated with each
RGB image along the feature dimension in the input sequence (a history of 6 images), which is processed
by the image tokenizer (an ImageNet pretrained EfficientNet-B3). For the additional input channels to
the image tokenizer, we initialize the new weights in the first convolution layer with all zeros. Since the
language instruction is not used, we remove the FiLM layers used in the original RT-1.

3.4 TRAJECTORY CONDITIONING DURING INFERENCE

During inference, a trajectory sketch is required to condition RT-Trajectory. We study 4 different methods
to generate trajectory sketches: human drawings, human videos, prompting LLMs with Code as Policies,
and image generation models.

Human-drawn Sketches Human-drawn sketches are an intuitive and practical way for generating trajec-
tory sketches. To scalably produce these sketches, we design a simple graphical user interface (GUI) for
users to draw trajectory sketches given the robot’s initial camera image, as shown in App. B.1.

Human Demonstration Videos with Hand-object Interaction First-person human demonstration
videos are an alternative input. We estimate the trajectory of human hand poses from the video, and
convert it to a trajectory of robot end-effector poses, which can later be used to generate a trajectory sketch.

Prompting LLMs with Code as Policies Large Language Models have demonstrated the ability to
write code to perform robotics tasks (Liang et al., 2022). We follow a similar recipe as described in
(Gonzalez Arenas et al., 2023) to build a prompt which contains text descriptions about the objects in the
scene detected by a VLM, the robot constraints, the gripper orientations and coordinate systems, as well as
the task instruction. By using this prompt, the LLM writes code to generate a series of 3D poses - originally
intended to be executed with a motion planner, which we can then re-purpose to draw the trajectory sketch
on the initial image to condition RT-Trajectory.

Image Generation Models Since our trajectory conditioning is represented as an image, we can use
text-guided image generation models to generate a trajectory sketch provided the initial image and language
instruction which describes the task. In our work, we use a PaLM-E style (Driess et al., 2023) model that
generates vector-quantized tokens derived from ViT-VQGAN (Yu et al., 2022) that represent the trajectory
image. Once detokenized, the resulting image can be used to condition RT-Trajectory.

4 EXPERIMENTS

Our real robot experiments aim to study the following questions:

1. Can RT-Trajectory generalize to tasks beyond those contained in the training dataset?
2. Can RT-Trajectory trained on hindsight trajectory sketches generalize to diverse human-specified

or automated trajectory generation methods at test time?
3. What emergent capabilities are enabled by RT-Trajectory?
4. Can we quantitatively measure how dissimilar evaluation trajectory motions are from training

dataset motions?

4.1 EXPERIMENTAL SETUP

We use a mobile manipulator robot from Everyday Robots in our experiments, which has a 7 degree-of-
freedom arm, a two-fingered gripper, and a mobile base.

Seen Skills We use the RT-1 (Brohan et al., 2023b) demonstration dataset for training. The language
instructions consist of 8 different manipulation skills (e.g., Move Near) operating on a set of 17 household
kitchen items; in total, the dataset consists of about 73K real robot demonstrations across 542 seen tasks,
which were collected by manual teleoperation. A more detailed overview is shown in Table 2.

Unseen Skills We propose 7 new evaluation skills which include unseen objects and manipulation
workspaces, as shown in Table 3 and Fig. 4. Both Upright and Move and Move within Drawer
examine whether the policy can combine different seen skills to form a new one. For example, Move
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within Drawer studies whether the policy is able to move objects within the drawer while the seen skill
Move Near only covers those motions at height of the tabletop. Restock Drawer requires the robot to
place snacks into the drawer at an empty slot. It studies whether the policy is able to place objects at target
positions precisely. Place Fruit inspects whether the policy can place objects into unseen containers.
Pick from Chair investigates whether the policy can pick objects at an unseen height in an unseen
manipulation workspace. Fold Towel and Swivel Chair showcase the capability to manipulate a
deformable object and interact with an underactuated system.

Figure 4: Visualization of trajectory sketches overlaid on the initial image for 7 unseen skills.
From left to right: Place Fruit, Upright and Move, Fold Towel, Move within Drawer,
Restock Drawer, Pick from Chair, Swivel Chair. See the rollouts in Fig. 15.

Evaluation Protocol Different trajectory sketches will prompt RT-Trajectory to behave differently. To
make the quantitative comparison between different methods as fair as possible, we propose the following
evaluation protocol. For each skill to evaluate, we collect a set of scenes. Each scene defines the initial
state of the task, described by an RGB image taken by the robot head camera. During evaluation, we first
align relevant objects to their original arrangements in the scene, and then run the policy. For conditioning
RT-Trajectory, we use human drawn sketches for unseen tasks in Sec. 4.2. In Sec. 4.3, we evaluate other
trajectory sketch generation methods described in Sec. 3.4.

4.2 UNSEEN TASK GENERALIZATION

In this section, we compare RT-Trajectory with other learning-based baselines on generalization to the
unseen task scenarios introduced in Sec 4.1.

• RT-1 (Brohan et al., 2023b): language-conditioned policy trained on the same training data;
• RT-2 (Brohan et al., 2023a): language-conditioned policy trained on a mixture of our training

data and internet-scale VQA data;
• RT-1-Goal: goal-conditioned policy trained on the same training data.

For RT-Trajectory, we manually generate trajectory sketches via the GUI (see Sec. B.1). Details about
trajectory generation are described in App. B.2. For RT-1-Goal, implementation details and goal condi-
tioning generation are presented in App. B.4. The results are shown in Fig. 5 and Table 4. The overall
success rates of our methods, RT-Trajectory (2D) and RT-Trajectory (2.5D), are 50% and 67% respec-
tively, which outperform our baselines by a large margin: RT-1 (16.7%), RT-2 (11.1%), RT-1-Goal (26%).
Language-conditioned policies struggle to generalize to the new tasks with semantically unseen language
instructions, even if motions to achieve these tasks were seen during training (see Sec. 4.5). RT-1-Goal
shows better generalization than its language-conditioned counterparts. However, goal conditioning is much
harder to acquire than trajectory sketches during inference in new scenes and is sensitive to task-irrelevant
factors (e.g., backgrounds). RT-Trajectory (2.5D) outperforms RT-Trajectory (2D) on the tasks where height
information helps reduce ambiguity. For example, with 2D trajectories only, it is difficult for RT-Trajectory
(2D) to infer correct picking height, which is critical for Pick from Chair.

4.3 DIVERSE TRAJECTORY GENERATION METHODS

In this section, we aim to study whether RT-Trajectory is able to generalize to trajectories from more
automated and general processes at inference time. Specifically, we evaluate quantitatively how RT-
Trajectory performs when conditioned on coarse trajectory sketches generated by human video demon-
strations, LLMs via Prompting with Code as Policies, and show qualitative results for image generating
VLMs. Additionally, we compare RT-Trajectory against a non-learning baseline (IK Planner) to follow the
generated trajectories: an inverse-kinematic (IK) solver is applied to convert the end-effector poses to joint
positions, which are then executed by the robot.

Human Demonstration Videos We collect 18 and 4 first-person human demonstration videos with
hand-object interaction for Pick (seen training skill) and Fold Towel. An example is shown in Fig. 6.
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Figure 5: Success rates for unseen tasks when conditioning with human drawn sketches. Scenarios contain
a variety of difficult settings which require combining seen motions in novel ways or generalizing to new
motions. Each policy is evaluated for a total of 64 trials across 7 different scenarios.

Figure 6: Trajectory from human demonstration video to fold a towel. From left to right, the first 4 images
show the human demonstration, and the last image shows the derived trajectory sketch.

Method Pick Fold Towel

IK Planner 42% 25%
Ours (2D) 94% 75%
Ours (2.5D) 100% 75%

(a) Trajectory from human video demonstrations.

Method Pick Open Drawer

IK Planner 83% 71%
Ours (2D) 89% 60%
Ours (2.5D) 89% 60%

(b) Trajectory from LLM prompting.

Table 1: Success rate of different trajectory generation approaches across tasks.

Details about video collection and how trajectory sketches are derived from videos are described in App. B.3.
The resulting trajectory sketches are more squiggly than the ones for training. Results are shown in Table
1a.

Prompting with Code as Policies We prompt an LLM (OpenAI, 2023) to write code to generate
trajectories given the task instructions and object labels for two seen skills, Pick and Open Drawer.
After executing the code written by the LLM, we get a sequence of target robot waypoints which can
then be processed into a trajectory sketch. In contrast with human-specified trajectories, LLM-generated
trajectories are designed to be executed by an IK planner and are therefore precise and linear as seen in Fig.
20. While they are also different from the hindsight trajectories in the training data, RT-Trajectory is able
to execute them correctly and outperform the IK planner in diverse pick tasks due to its ability to adapt
motion to the scene nuances like object orientation. Results are shown in Table 1b.

Image Generation Models We condition the VLM with a language instruction and an initial image
to output trajectory tokens which are de-tokenized into 2D pixel coordinates for drawing the trajectory.
Qualitative examples are shown in Fig 7. Although we see that generated trajectory sketches are noisy and
quite different from the training hindsight trajectory sketches, we find promising signs that RT-Trajectory
still performs reasonably. As image-generating VLMs rapidly improve, we expect that their trajectory
sketch generating capabilities will improve naturally in the future and be usable by RT-Trajectory.

4.4 EMERGENT CAPABILITIES

Prompt Engineering for Robot Policies Similar to how LLMs respond differently in response to language
prompt engineering, RT-Trajectory enables visual prompt engineering, where a trajectory-conditioned
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Figure 7: Example trajectory from image generation models. From left to right, the first image shows
the overlaid trajectory sketch, and the next 4 images show the rollout conditioned on it. The language
instruction is: pick orange can from top drawer and place on counter.

Figure 8: Example RT-Trajectory evaluations in realistic scenarios involving (a) novel articulated objects
requiring new motions, (b) manipulation on new surfaces in new buildings in new heights, (c) interacting
with a pivot-hinge cabinet despite training only on sliding-hinge drawers, and (d) circuitous tabletop
patterns extending beyond direct paths in the training dataset. Full rollouts are shown in Fig. 17 and the
supplemental video at https://rt-trajectory.github.io/.

policy may exhibit better performance when the initial scene is fixed but the coarse trajectory prompts are
improved. We find that changing trajectory sketches induces RT-Trajectory to change behavior modes
in a reproducible manner, which suggests an intriguing opportunity: if a trajectory-conditioned robot
policy fails in some scenario, a practitioner may just need to “query the robot” with a different trajectory
prompt, as opposed to re-training the policy or collecting more data. Qualitatively, this is quite different
from standard development practices with language-conditioned robot policies, and may be viewed as an
early exploration into zero-shot instruction tuning for robotic manipulation, similar to capabilities seen in
language modeling (Brown et al., 2020). See App. E.1 for examples.

Generalizing to Realistic Settings Prior works studying robotic generalization often evaluate only a few
distribution shifts at once, since generalizing to simultaneous physical and visual variations is challenging;
however, these types of simultaneous distribution shifts are widely prevalent in real world settings. As a
qualitative case study, we evaluate RT-Trajectory in 2 new buildings in 4 realistic novel rooms which contain
entirely new backgrounds, lighting conditions, objects, layouts, and furniture geometries. With little to
moderate trajectory prompt engineering, we find that RT-Trajectory is able to successfully perform a variety
of tasks requiring novel motion generalization and robustness to out-of-distribution visual distribution shifts.
These tasks are visualized in Fig. 8 and rollouts are shown fully in Fig. 17.

4.5 MEASURING MOTION GENERALIZATION

We wish to explicitly measure motion similarity in order to better understand how RT-Trajectory is able to
generalize to unseen scenarios and how well it can tackle the challenges of novel motion generalization.
Towards this, we intend to compare evaluation trajectories to the most similar trajectories seen during
training. To accomplish this, we propose to measure trajectory similarity by utilizing the discrete Fréchet
distance (Fréchet, 1906) (details in App. C.1). By computing the distance between a query trajectory and
all trajectories in our training dataset, we can retrieve the most similar trajectories our policy has been
trained on. We perform this lookup for trajectories from the rollouts for the unseen task evaluations in
Sec. 3.4. Fig. 9 showcases the 10 most similar training trajectories for a selection of query trajectories.

Fig. 10, 11, and 12 furthermore show statistics of the most similar training samples, such as the distribution
of skill semantics. We find that the trajectories for unseen tasks show varying levels of similarity to training
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Top-10 Most Similar Training Trajectories to Query Trajectories

“close top drawer” (from Training Dataset)

“place fruit”

“pick from chair”

“move within drawer”

(a)

(b)

(c)

(d)

Figure 9: Each row contains 4 instances of an initial image of an evaluation rollout super-imposed with the
executed evaluation trajectory (red) compared with the 10 most similar trajectories (purple) in the training
dataset. Row (a) shows query trajectories of the in-distribution close top drawer skill seen in the
training data. Rows (b,c,d) show query trajectories of unseen evaluation skills.

trajectories. For example, the motion for place a fruit into a tall bowl may be surprisingly
similar to the motion for particular seen instances of the move X near Y. However, for many unseen
skills, the most similar examples in the training data are still significantly more different than for examples
within the training set. In addition, even for evaluation trajectories that seem close in shape to the most
similar training trajectories, we find differences in precision-critical factors like the z-height of gripper
interactions (picks that are just a few centimeter incorrect will not succeed) or semantic relevance (the
most similar training trajectories describe different skills than the target trajectory). Thus, we expect that
the proposed new skills for evaluation indeed require a mix of interpolating seen motions along with
generalizing to novel motions altogether.

5 CONCLUSION AND LIMITATIONS

In this work, we propose a novel policy-conditioning method for training robot manipulation policies
capable of generalizing to tasks and motions that are significantly beyond the training data. Key to our
proposed approach is a 2D trajectory sketch representation for specifying manipulation tasks. Our trained
trajectory sketch-conditioned policy enjoys controllability from visual trajectory sketch guidance, while
retaining the flexibility of learning-based policies in handling ambiguous scenes and generalization to novel
semantics. We evaluate our proposed approach on 7 diverse manipulation skills that were never seen during
training and benchmark against three baseline methods. Our proposed method achieves a success rate of
67%, significantly outperforming the best prior state-of-the-art methods, which achieved 26%.

Though we demonstrate that our proposed approach achieves encouraging generalization capabilities for
novel manipulation tasks, there are a few remaining limitations. First, we currently assume that the robot
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Figure 10: Semantic relevance measures how the semantic skills of rollout trajectories compare to the
semantic skills of the most similar training trajectories, as measured by motion similarity. For the seen skill
(close top drawer), the most similar training trajectories are largely of the same semantic skill. For
the unseen skills, the most similar training trajectories are composed of semantically different tasks.

(a) “close top drawer” 
(from Training Dataset)

(b) “place fruit” (d) “pick from chair”(c) “move within drawer”

Figure 11: First-interaction height alignment compares the relative difference between the z-height of the
first gripper interactions of query trajectories to the first gripper interactions of the most similar training
trajectories, as measured by motion similarity. The red line represents the baseline relative difference of the
query trajectory compared with itself, which would be a difference of 0.0. The unseen skills in general see
large variance in the difference of first-interaction heights of the query trajectories compared to the most
similar training trajectories.

(a) “close top drawer” 
(from Training Dataset)

(b) “place fruit” (d) “pick from chair”(c) “move within drawer”

Figure 12: We visualize the distribution of Fréchet distances of query trajectories to the most similar
training trajectories, as measured by motion similarity. The red line represents the median of the average
distance between evaluation trajectories and the most similar training trajectories. Query trajectories of
unseen skills in general see larger Fréchet distances to the most similar training trajectories, compared to
query trajectories from training skills.

remains stationary and only uses the end-effector for performing useful manipulation motions. Extending
the idea to mobile-manipulation scenarios that allow the robot to manipulate with whole-body control is a
promising direction to explore. Second, our trained policy makes its best effort in following the trajectory
sketch guidance. However, a user may want to specify spatial regions where the guidance is more strictly
enforced, such as when to avoid fragile objects during movement. Thus, an interesting future direction is to
enable systems to use trajectory sketches to handle different types of constraints.
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A EXPERIMENT DETAILS

A.1 SEEN SKILLS

Skill Count Description Example Instruction

Pick Object 17 Lift the object off the surface pick coke can
Move Object Near Object 337 Move the first object near the second move pepsi can near rxbar blueberry
Place Object Upright 8 Place an elongated object upright place water bottle upright
Knock Object Over 8 Knock an elongated object over knock redbull can over
Open Drawer 3 Open any of the cabinet drawers open the top drawer
Close Drawer 3 Close any of the cabinet drawers close the middle drawer
Place Object into Receptacle 84 Place an object into a receptacle place brown chip bag into white bowl
Pick Object from Receptacle
and Place on the Counter

82 Pick an object up from a location and then place
it on the counter

pick green jalapeno chip bag from paper
bowl and place on counter

Total 542

Table 2: The list of seen training tasks with their descriptions and example language instructions. Language
instructions are only used for language-conditioned baselines. “Count” refers to the number of distinct
tasks per skill (e.g., Pick coke can and Pick apple are two different tasks).

A.2 UNSEEN SKILLS

Skill Count Description Example instruction

Place Fruit 12 Place fruit into the container place orange into basket
Upright and Move 6 Place an object upright and move it near another place green can upright near pepsi can
Move within Drawer 6 Move one object near another within the drawer move coke can near 7up can at top drawer
Restock Drawer 12 Place objects into the desired position in the drawer place coke can into the top right of top drawer
Pick from Chair 8 Pick an object placed on the chair pick apple from chair
Fold Towel 4 Fold the towel by moving one corner to another fold towel from bottom right
Swivel Chair 10 Swivel the office chair push the chair

Table 3: The list of unseen evaluation tasks with their descriptions and example language instructions.
Language instructions are only used for language-conditioned baselines. “Count” refers to the number of
scenes collected for evaluation.

A.3 QUANTITATIVE RESULTS FOR UNSEEN TASKS

Task RT-Traj (2D) RT-Traj (2.5D) RT-1 RT-2 RT-1-goal

Place Fruit 75% 75% 0% 33% 8%
Upright and Move 33% 50% 17% 0% 0%
Move within Drawer 67% 100% 33% 0% 17%
Restock Drawer 92% 67% 42% 17% 42%
Pick from Chair 0% 38% 0% 0% 17%
Fold Towel 75% 75% 0% 0% 0%
Swivel Chair 0% 70% 17% 0% 50%
Overall 50% 67% 17% 11% 26%

Table 4: Success rates for unseen tasks when conditioning with human drawn sketches.

B IMPLEMENTATION DETAILS FOR DIFFERENT INPUT MODALITIES

B.1 GUI FOR HUMAN-DRAWN TRAJECTORY SKETCHES

As the main trajectory generation method we study is user-specified trajectory drawings, we develop a
graphical user interface (GUI) for users to draw trajectory sketches. See Fig. 13 for example. Given the
current robot camera image, a user can drag and move the mouse to draw curves on the canvas. Then, they
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can click on the canvas to add markers to indicate gripper closing or opening actions. Additionally, the UI
interface also supports simple height annotation. Users can specify the desired height values for pixels they
select on the canvas. This height value will be assigned to the closest point on the drawn 2D trajectory. For
unannotated points on the 2D trajectory, we interpolate their height values according to annotated ones.

Figure 13: Left: The GUI for users to draw trajectory sketches given the robot’s current camera image.
The 2D trajectory is directly drawn by manual input, which can then be annotated with interaction markers
or waypoints corresponding to user-specified heights. Right: The resulting height-aware trajectory sketch
generated according to the output of the UI.

B.2 COLLECTING HUMAN-DRAWN TRAJECTORY SKETCHES

For each scene, we use a held-out RT-Trajectory (2.5D) policy to explore different trajectory “prompts”
given a budget of trials, and save the trajectory sketch of the first successful episode. We refer to such
process as “prompt engineering” (Sec. 4.4). If all attempts fail, we just save the trajectory sketch from
the last episode. RT-Trajectory policies used for evaluation are trained with different random seeds and
evaluated with the saved trajectory sketches as conditioning. Note that we observe that our evaluated
policies can have non-zero success rates on the scenes where we fail to find a successful episode during
“prompt engineering”.

B.3 HUMAN HAND POSE ESTIMATION

We employ Mediapipe (Lugaresi et al., 2019) to detect the human hand pose represented as 21 landmarks
from the 2D image at each video frame. The two landmarks on the thumb and another two landmarks
on the index finger are used to represent a parallel gripper. The 2D landmarks are lifted to 3D given the
depth map. We then interpolate the end-effector pose from these four points. We manually annotate the
key frames at which the hand begins to grasp and release the target object. Given estimated end-effector
poses and key frames for interaction, we can generate a trajectory sketch per video.

B.4 IMPLEMENTATION DETAILS FOR RT-1-Goal

The network architecture of RT-1-Goal is the same as RT-Trajectory, except a goal image is used instead of
a trajectory sketch. To acquire goal conditioning for training, we use the last observation of each episode as
the goal image for all frames in the episode. For the quantitative comparison in Sec. 4.2, the image of the
last step of the episode (App. B.2) used to generate the trajectory sketch for each scene is saved as the goal
conditioning for evaluation.

C MOTION DIVERSITY ANALYSIS

C.1 COMPUTATION OF TRAJECTORY SIMILARITY

To measure the distance between two end-effector motion trajectories, we employ the Fréchet dis-
tance (Fréchet, 1906; Eiter & Mannila, 1994), a measure that quantifies the similarity between two
curves by finding the minimum “leash length” required for two agents traversing each curve simultaneously
while maintaining their respective temporal order. As a well-adopted similarity measure in computer vision
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and vehicle tracking (Borgefors, 1984), Fréchet distance may be a reasonable choice for comparing 3D robot
end-effector waypoint trajectories since it is order-preserving and parameterization independent (Holladay
& Srinivasa, 2016).

Specifically, consider two trajectories τ and τ ′ where each trajectory contains n waypoints τ =
{ρ0,ρ1,...,ρm} and τ ′={ρ′0,ρ′1,...,ρ′n}, and d(ρi,ρ′i) is a distance measure like Euclidean distance. Then,
using the notation τ [1:] to denote removing the first element and returning the rest of the sequence τ , the
Fréchet distance FD is recursively defined as:

FD(τ,τ
′)=max(d(ρ0,ρ

′
0),min{FD(τ [1:],τ

′[1:]),FD(τ,τ
′[1:]),FD(τ [1:],τ

′)})

In this work, each waypoint is the sensed end-effector center position and the distance measure is Euclidean
distance. Note that the orientation and interaction (closing/opening action) are not taken into consideration.

C.2 ADDITIONAL SAMPLES OF TRAJECTORY SIMILARITIES

Figure 14 shows additional examples of evaluation trajectories and their most similar trajectories in the
training dataset.

D ADDITIONAL VISUALIZATION

Fig. 15 visualizes the example rollouts of unseen skills. Fig. 16 demonstrates more example trajectories
from image generation models and corresponding rollouts.

Fig 17 shows the rollouts of example evaluations in realistic scenarios mentioned in Sec. 4.4. We showcase
additional evaluations in Fig. 18. Notably, we find that RT-Trajectory is quite robust to various simultaneous
visual distribution shifts including new buildings, new backgrounds, new distractors, new lighting conditions,
new objects, and new furniture textures. In addition, these realistic “in the wild” evaluations were not ran
in controlled laboratory environments, so the evaluations often required generalization to new heights or
furniture geometries (different shaped drawers, cabinets, or tables).

E CASE STUDIES IN EMERGENT CAPABILITIES AND BEHAVIORS

E.1 PROMPT ENGINEERING

Fig. 19 illustrates two examples of prompt engineering mentioned in Sec. 4.4. For instance, if the user
wants to prompt RT-Trajectory to place an object at a high position, it is better to draw a trajectory that first
reaches a higher peak, and then move downward to the target.

E.2 RETRY BEHAVIOR

Compared to non-learning methods, RT-Trajectory is able to recover from execution failures. Fig. 20
illustrates the retry behavior emerged when RT-Trajectory is opening the drawer given the trajectory sketch
generated by prompting LLMs with Code as Policies (CaP) mentioned in Sec. 3.4. After a failure attempt
to open the drawer by its handle, the robot retried to grasp the edge of the drawer, and managed to pull the
drawer.

E.3 HEIGHT-AWARE DISAMBIGUATION FOR RT-Trajectory (2.5D)

2D trajectories (without depth information) are visually ambiguous for distinguishing whether the robot
should move its arm to a deeper or higher. We find that height-aware color grading for RT-Trajectory
(2.5D) can effectively help reduce such ambiguity, as shown in Fig. 21.
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Figure 14: Evaluation trajectories for new skills and their 10 closest trajectories from the training set. Each
row shows three frames of a skill evaluation rollout, with the executed trajectory and similar training set
trajectories overlaid, as well as depicting the trajectories in an orthographic projection in robot base frame
looking at the robot from the front and the side. As can be seen, the policy is able to follow the desired
trajectories closely and achieve the tasks. While in many cases, in particular in image space, some of
the similar trajectories from the training set look very close to the executed trajectory, the front and side
view in rows 1 to 4 reveal that the policy at some crucial point has to - and successfully does - deviate
from what it has seen during training. E.g., in row 3 the prompt says to go all the way down to pick up
a bottle, while all nearest training trajectories are from close middle drawer, which doesn’t move
the gripper down far enough. Additionally, row 5 is an example where for a swivel chair prompt
trajectory there coincidentally are many very closely matching move X near Y training trajectories.
However, the prompt here specifies to not close the gripper at the first contact point, which the policy is
able to respect.
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Figure 15: Example rolllouts of 7 unseen skills. The trajectory sketch overlaid on the initial image is
visualized. From top to bottom: Place Fruit, Upright and Move, Fold Towel, Move within
Drawer, Restock Drawer, Pick from Chair, Swivel Chair.
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Figure 16: Example trajectories from image generation models. Each row shows the trajectory sketch
overlaid on the first frame and the rollout. The language instructions are: open middle drawer,
place orange into middle drawer, move 7up can near blue plastic bottle.
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(a)

(c)

(d)

(e)

(g)

(f)

(b)

Figure 17: Qualitative examples of emergent capabilities of RT-Trajectory in realistic scenarios beyond the
training settings: (a) new articulated objects requiring novel motion strategies, (b) new circuitous motions
requiring multiple turns, (c) new living room setting with a new height, object, and background, (d) new
bathroom setting with precise picking from a cup, (e) new bedroom setting with a drawer at a new height,
(f) new kitchen setting with an unseen pan requiring placement onto a new stove, and (g) new kitchen
setting with a new pivot hinge that requires a new motion for opening and closing.
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Figure 18: Visualizing additional interesting examples of RT-Trajectory’s generalization performance in
new scenarios. These include a novel kitchen room setting with an unseen cup and unseen placemat, a new
living room room setting with new manipulation objects with new furniture pieces in new heights, and a
bathroom setting with harsh lighting and different table height.
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(a) The objective is to place the apple onto the middle stage.

(b) The objective is to place the apple onto the top stage.

Figure 19: Case studies in prompt engineering. Each row shows the trajectory sketch overlaid on the first
frame and the corresponding rollout. As seen in the first two rows, suboptimal trajectory prompts result in
failures. However, by keeping the initial scene conditions identical but simply improving the trajectory
prompt, the policy is able to succeed.

Figure 20: Example of retry behavior. The first image is the trajectory sketch generated from the CaP
overlaid on the initial observation. The remaining images show the rollout. The robot first attempts to open
the drawer by grasping its handle, but fails (2nd image). Then, it retries to open the drawer by grasping the
edge instead.
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Figure 21: Comparison between RT-Trajectory (2D) and RT-Trajectory (2.5D). Given the same 2D
trajectory generated by the CaP, RT-Trajectory (2.5D) lifts the object while RT-Trajectory (2D) moves the
object to a deeper position due to the ambiguity of a 2D trajectory.

23


	Introduction
	Related Work
	Method
	Overview
	Hindsight Trajectory Labels
	Policy Training
	Trajectory Conditioning during Inference

	Experiments
	Experimental Setup
	Unseen Task Generalization
	Diverse Trajectory Generation Methods
	Emergent capabilities
	Measuring Motion Generalization

	Conclusion and Limitations
	Experiment Details
	Seen Skills
	Unseen Skills
	Quantitative Results for Unseen Tasks

	Implementation Details for Different Input Modalities
	GUI for Human-drawn Trajectory Sketches
	Collecting Human-drawn Trajectory Sketches
	Human hand pose estimation
	Implementation Details for RT-1-Goal

	Motion Diversity Analysis
	Computation of trajectory similarity
	Additional samples of trajectory similarities

	Additional Visualization
	Case Studies in Emergent Capabilities and Behaviors
	Prompt Engineering
	Retry behavior
	Height-aware Disambiguation for RT-Trajectory (2.5D)


